Abundances of Carbon Monoxide, Formaldehyde, and Methyl Alcohol in Comets: Measuring Efficiencies for Conversion of CO in Grain Mantles

Michael A. DiSanti

Goddard Center for Astrobiology and Solar System Exploration Division NASA's Goddard Space Flight Center Greenbelt, MD 20771 USA disanti@lepvax.gsfc.nasa.gov

Michael J. Mumma

Goddard Center for Astrobiology and Solar System Exploration Division NASA's Goddard Space Flight Center USA

Boncho P. Bonev

University of Toledo at Solar System Exploration Division, NASA's GSFC USA

Neil Dello Russo

Catholic University of America at Solar System Exploration Division, NASA's GSFC USA

Karen Magee-Sauer

Dept. of Chemistry and Physics Rowan University Glassboro, NJ USA

William M. Anderson

Catholic University of America at Solar System Exploration Division, NASA's GSFC USA

Dennis C. Reuter

Solar System Exploration Division NASA's Goddard Space Flight Center USA

Erika Gibb

Dept. of Physics University of Notre Dame South Bend, IN USA

Hydrogen addition to CO ice in grain mantles prior to their incorporation into comets has been proposed as a viable means of producing monomeric formaldehyde and methanol, a process that has been verified in laboratory irradiation experiments on pre-cometary analog ices (H₂O:CO mixtures). The relative abundances of CO, H₂CO, and CH₃OH in comets represents one measure of the conversion efficiency of CO, and provides information on extant conditions (e.g., H-atom densities) in the region of the proto-solar nebula where these comets formed. Using high-resolution echelle spectrometers, we have detected CO and CH₃OH in ten Oort cloud comets, and at least four of these also exhibit definitive emission from H₂CO. We will report measured abundances and conversion efficiencies for several comets in our database.

The presence of formaldehyde and related molecules in comets can provide fundamental information pertaining to the origin of life. For example, H₂CO not only is significant in its polymerization to sugar but, along with HCN and NH₃, is thought to play an important role in the synthesis of amino acids in primitive bodies such as the parent of the Murchison meteorite.

We also apply an existing fluorescence model for H_2CO to line-by-line intensities in our comet spectra. This provides a constraint on the rotational temperature for comparison with that measured for other molecules (e.g., CO, HCN, H_2O), and permits more accurate retrieval of production rates.

This work is supported by grants 344-53-51, 344-33-55, and 344-32-98 from the NASA Astrobiology, Atmospheres, and Astronomy Programs, respectively.